
International Journal of Research in Science And Technology http://www.ijrst.com 

(IJRST) 2012, Vol. No. 2, Issue No. II, Apr-Jun ISSN: 2249-0604 

 

147 

International Journal of Research in Science And Technology     

 

“LOCALIZATION AND MAPPING USING A SINGLE- 

PERSPECTIVE CAMERA” 

Neetu 

Research Scholar, CMJ University, Shillong 
 

 

INTRODUCTION 
 

Localization and mapping are fundamental problems in mobile robotics. On the one hand, it is 

crucial to know where the robot is located in its environment in order to perform high-level 

applications such as delivery tasks. On the other hand, maps of the environment are often not 

available at the outset. Therefore, the ability to build a map of the environment is often an 

essential requirement. In the literature, the localization problem has been intensively studied in 

the past. It can be divided into two different classes. In the first class, robot localization is solved 

under the assumption that a map of the environment is known. It is the goal to track the robot’s 

position in a map. If the start location is unknown, we refer to it as global localization. In the 

second class, the environment is unknown so it is required to build a map on the fly. This 

problem is called simultaneous localization and mapping (SLAM). In general, SLAM is a harder 

problem than localization in known environments since mapping and localization needs to be 

solved at the same time. SLAM is often considered to be a chicken-and-egg problem: A map is 

necessary to localize a robot, and the robot’s position and orientation should be known in order 

to build a map. Thus, we have got circular cause and consequence. 

A large group of researchers presented solutions to SLAM by means of proximity sensors such 

as laser range finders, sonars, or stereo vision cameras. In this thesis, we address the problem of 

global localization as well as SLAM using a wheeled robot equipped with a single-perspective 

camera only. In contrast to laser range finders, cameras have the advantage that they are 

inexpensive and lightweight. However, single cameras have a serious drawback. They cannot 

measure the distance to landmarks in the environment. Single cameras only provide bearing 

information. Therefore, we refer to single cameras as bearing-only sensors. The difference 

between proximity sensors and bearing-only sensors is illustrated in Figure 1. The single camera 

used in our work is called perspective in order to highlight the restricted field of view. By 

contrast, robot localization were also addressed with extreme wide-angle cameras using fish eye 

lenses. 

http://www.ijrst.com/


International Journal of Research in Science And Technology http://www.ijrst.com 

(IJRST) 2012, Vol. No. 2, Issue No. II, Apr-Jun ISSN: 2249-0604 

 

148 

International Journal of Research in Science And Technology     

 

 

Figure 1: An obstacle is perceived by different sensors (blue shapes). Left: Proximity 

Sensors perceive the distance as well as the angle to the structure. Right: For bearing- 

Only sensors the distance to the structure is unknown. Only the angles are observed. 

 
In this thesis, we present a new approach to solve the simultaneous localization and mapping 

(SLAM) problem. In particular, we adapted the histogram-based landmark initialization process 

of Davision [7] to speeded-up robust features (SURF) [2] and Rao-Blackwellized particle 

filtering. Furthermore, we present a novel method to match features using a cost function that 

takes into account differences between the feature descriptors as well as spatial information. To 

find an optimal matching between observed features, we apply the Hungarian method [26] – a 

global optimization algorithm. Moreover, we introduce a framework which allow us to correct 

inaccurate odometry data based on visual information. Biased robot rotation is corrected using a 

gradient-descent like local optimization technique. Several experiments performed on a real- 

robot illustrates that our approach is reliable and robust to noise. In particular, it is shown that 

our feature matching technique outperforms other approaches. 

 

LOCALIZATION 
The robot is moving through an environment. Our goal is to estimate the trajectory x1, xn – the 

path of the robot. The relative motion ut of the robot is acquired using an odometer sensor which 

measures wheel turns. Although calculations purely based on the robot odometry can serve as 

good estimates of the robot’s pose in the first place, this approach is deemed to fail in the long 

run. Even very small errors in the odometry, for instance due to wheel slip or approximation 

errors, will accumulated over time so that the pose estimate will be far from the true pose after a 

certain amount of time. Therefore, the pose is corrected using camera images. Visual features in 

the image are treated as observations zt. A particle filter is used to represent and infer the 

posterior distribution bel(xt). 
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In this chapter, we assume that the environment is known and that a map of the environment is 

given. How to build a map by means of visual observations is explained in the next chapter. 

Motion Model 

We refer to the position and orientation of the robot in the 2D plain as pose x, 

x = (x, y, β). (4.1) 

The orientation β is zero if the robot is aligned with the y-axis as illustrated in Figure 2. As one 

can see, the coordinate system is a right-handed one since β increases as soon as the robot turns 

anti-clockwise. 

Let us assume, our robot possesses a odometry device which provide us with the relative motion 

ut at discrete time steps. In addition, we assume that our robot has 

 

Figure 2: Robot pose. 

a differential drive. That is it can drive forward and turn simultaneously. Sideward motion is not 

possible. A motion model is required p(x′|ut, xt−1) which estimates the new pose x′ given the 

relative motion ut and the old pose xt−1. The most common odometry-based motion model is the 

rotate-forward-rotate model. Here, the relative motion ut is decomposed into an rotation rot 1, a 

forward translation for and another rotation rot 2. It is assumed that these three component are 

affected by independent noise. On the one hand, rotate-forward-rotate is a good approximation of 

the robot motion in a theoretical point of view (see Thrun [55, pp. 132]). On the other hand 

rotate-forward-rotate has a serious shortcoming in practice. It does not cover backward motion. 

However, smallest errors in the odometry estimate could lead to a minimal pretended backward 

motion when the robot actually stands still. As a consequence, this minimal motion backwards 

would be modeled as a 180 degree rotation, a minimal forward translation and another 180 

degree rotation. Thus, noise of a 360 degree rotation would be added, although the robot did not 

rotate at all. On this account, we use another motion model: the forward-sideward-rotate model. 

Here, the relative motion ut is decomposed in a forward/backward translation for, a sideward 

translation side and a final rotation rot . Although the real robot cannot drive sideward’s, 

forward-sideward-rotate is an appropriate model in practice if the time difference between two 

odometers estimates ut and u′ t is not too large. Our forward-sideward-rotate implementation is 

given in Table 1. Typically the relative motion ut is given in terms of two poses: ¯xt−1 and ¯xt. 
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In line 2 to 4, the forward/backward translation for , the sideward translation side and the rotation 

rot is computed. Afterwards, noise is added (line 5 to 7) using the function sample(σ). Thereby, 

we sample from a Gaussian distribution with zero mean and variance σ. In our model, the noise 

in the forward motion, sideward motion and rotation depends on their own magnitudes |for|, 

|side| and |rot|. The strength of this dependency is covered by the three parameters αfor , αside 

and αrot . Straight 

 

Table 1: Forward-sideward-rotate motion model. Remark that ut = (¯xt−1, ¯xt−1). 

forward translation is a very common motion. However, an intended forward motion could lead 

to an unnoticed rotation, e.g. due to bumps on the ground or wheel slip. Therefore, rotnoisy is 

also affected by the magnitude of the forward-backward translation |for | which is parameterized 

by foreside. On the other hand, we ignore that a rotation could affect for noisy. or sidenoisy. 

Only in artificial cases where the robot rotates constantly, rotation would have a serious impact 

on the noise in the translation. At last, the robot pose is updated in line 8 to 10. The use of the 

modulo operator ensures that the angle β always lies in the interval [0, 2π]. 
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